disk towards the outer margin. On the posterior wings the metallic colouring at the base of both wines and in the discal band across the posterior wings is more bluish and less golden green, while the black velvety spots in the band are more extended inwardly; the outer edge of the band is further from the outer margin and more convex between the veins. Both wings are broader and more rounded at the apex.

Expanse of wings $1 \frac{3}{8}$ inch.
IIab. New Britain.
LVI.-Observations on the Derivation and Homologies of some Articulates. By James D. Dana*.

Tine term Articulates is used here in preference to Arthropods, because the latter group is believed to be not a natural one, Crustaccans and Insects being less closely related to one another, as indicated beyond, than Annelids and Insects.

Derivation of Limuloids and Crustaceans.-As has bcen suggested by Lankester, it is probable that all the Articulates are successional to the Rotifers. There is reason for believinc further that the types of Amnelids, Crustaceans, and probably that of Limuloids had their independent Rotifer origin.

The Nauplius, or larval form of a Crustacean, shows, by itz having but three pairs of limbs (two besides an antennary pair), that the type is not successional to a many-jointer Annelid, but rather to some Pedalion-like Rotifer. The discoveries of Prof. C. E. Beecher announced in the preceding and carlier numbers of this 'Journal' leave no doubt that the 'Trilobites are multiplicate Isopod Crustaccans, precursors of the normal Isopods, as the true Phyllopods, also multiplicate species, were precursors of the Decapods $\dagger$.

The Eurypterids, the early form of the Limuloids, are related to Crnstaceans in number of body-segments, it leing 19, as in the Tetradecapods, and in the fact that 13 of these 19 segments pertain to the thorax and abdomen. But the wide distinction exists that the Eurypterids have no thomacic or

[^0]abulominal limbs, and the only trese feet which they have are also at base month-organs, that is organs that prothin to the heal. Morenver, as has been shown by lackard and others for the Limulns, they do not pass thourh the Nauplins stage in their deverpment. These diversitios and agrements appear to indicate a derivation for the Limuloids nearls like that of the Crustacean type, hat probably not from Crustaceans. But since Limuloids camot yet be provel to have existed before the Trenton perion in the Lower Silurian, a derivation from some species related to the Ceratiocurids is possible. Since many, if not all, of the Eurypterids were freshwater or brackish-water species, the transfer to fresh water may have been an incident attending the divergence, and also an explanation of their attaining so great dimensions, fresh water having been their protection. The large Eurypteride, several feet in length, would have been helpless among Sharks ant Ganoids.

Derivation of Aruchmids.- The line to the lower and carlier Arachinids, that is, to the Scorpions, leads up, according to Yan Beneilen, Packard, and others, from the early Pterygotuslike Limuloids. The early Scorpion, as well as the modern kinds, has the same number of body-segments as a Eurypterus or Pterygotus-mamely, 7 thoracic and 6 abdominal (precisely the normal number in Crnstaceans), -the same ceplatic relations of the legs, the same absence of abdominal appendages, a like absence of thoracic appendages from all the segments excepting the first two, and similar functions in the members pertaining to these two segments. Further, according to B. Peach, these early Limuloids sometimes have, like the Scorpions, pairs of "combs" or pectinated organs on the underside of some of the thoracic segments.

But in this change from an aquatic to a terrestrial species the upward progress in structure was great. The four posterior pairs of feet in the terrestrial Scorpion have no longer the low-grade feature of serving as jaws as well as feet, but are simply feet; they are the chief organs of locomotion, and only those of the anterior pair are appendages to the mouth. 'Ihe antenne are shortened to pincers (falces), that also serve the mouth. The four pairs of feet are thus ceplutic organs, if comparison be made with the Limuloids and Crustaceans, though in arachnology they are called thoracic. In the later true Spiders the body lad lost its true Eurypteroid abdomen, but had still, in Palæozoic species, its distinctly segmented thorax ; and this thorax is the abdomen of arachnology. It is segmented in some modern species, while in others the subdivisions have become obsolete or are but faintly indicatel.

The abdomen of the Firypterid, however, exists as a slenderjointed thread in Geralinura of Scudder, of the Carboniferous, which has its Illinois and also Bohemian species, and has survived till now in the modern Telyphonus.

Derivation of Myriapods and Insects.-Myriapods, although inferior to Insects, are as yet known only from the early Devonian. The Devonian species, and also those of the Carboniferous, are of the Millepede or lower doubly multiplicate section of Myriapods, with one exception, that of the remarkable few-jointed caterpillar-like Pulrocampa of Mcek and Worthen.
'The fact of a line of succession from Worms to Myriapods and from Myriapods to Insects has not been proved by geological discovery. The derivation of Myriapods from some type of Annclids is zoologically suggested, as long since recognized, by the apparently transitional form of Peripatus, a low-grade Myriapod resembling much the larwa of some Insects, and by the like multiplicate strueture of Ammelids and Myriapods. It might be inferred also from the resemblance of the Palceocampa of the Illinois Carboniferons to the caterpillar of an Insect of the genus Aretia, as remarked by Scudder.

Myriapods are regarded as the precursors of Insects on account of their approximate resemblance to the latter in antemm and the appendages of the month, and because also of the worm-like form of most Insect larve, these larvac appearing to be survivals of the Myriapod stage. In the change from an Amelid and Myriapod to an Insect the multiplicate feature disappeared and the number of parts beeame essentially the fixed normal number of the type, both as regards the body-segments and their jointed appendages.

The rise of grade from the Myriapod to the Insect involved the appropriation of the three body-segments of the Myriapod bearing the three anterior pairs of teet (which correspond normally to half the body-segments of the head of an Isopod Crustacean) for forming the isolated middle section of the body, called the thorax, and the suppression of all the other pairs of feet. In: both Spiders and Inseets the change involved also a general coneentration of the structure toward the cephalic nervous centre, that is a shortening of the range of ecphalie control, and especially the distance to the posterior limit of locomotive action. Compared with a crab, the highest type in the Crnstacean series, its superior, an ant, is a very little thing.
'The fact that in low-grade lusects there is no proper metamonhosis, while in the higher, ats they rise in grade, the

larval stage is lower and lower in embryonic level, sugrests that the larval stage results from an attendant retrograde cmbryonic change to a line parallel with the Myriapod, and beyond to the memberless condition of a worm. The principle appears to be a general one among animals, and thence the higher the species the longer the stage of youth.

The relations in body-segments and limbs between the classes of Crustaceans, Limuloids, Arachnids, Myriapods, and Insects are shown in the table (p. 505). The seginents of the body are numbered along the left margin; the zero opposite signifies that the segment, though present, has no appendage.

In this table the following abbreviations are used:-Ant., antenna; App., pairs of jointed appendages, either pediform or branchial; M., mandible; Mx., maxilla; P., feet; M-P., fect that serve also as jaws; Mx. \& L. (under Insects), maxillx and labium; Fol. P., foliaceous or lamellar feet or appendages.

Under the Limuloids the genus Eurypterus fails of antenna, but they are present in Pterygotus and are chelate; and this chelate (or thumb-and-finger) form characterizes also the modern Limulus, the Scorpions, and the common Spiders. In the table the two pairs of maxille of Insects are assumed to belong to a single body-segment, as held by many zoologists, including (as he himself informs the writer) Prof. S. I. Smith ; the table shows that, with this admission, the thorax and head of an Insect are essentially homologous with the head of a Tetradecapod Crustacean.

LVII-New Species of Cyclophorus and "spiaculum from the Khasi and Naga Hills, Assam. By Lieut.-Col. H. H. Godwin-Austen, li.R.S. \&e., and Col. R. Beddome, F.L.S. 心e.

$$
\text { Cyclophorus IMuspratti, sp. } 11 .
$$

Shell umbilieated, turbinate, slightly keeled; sculpture, apex smooth, the whorls thence are longitudinally ribbed and striated, increasing in strength near the suture from above downwards, and crossed by the lines of growth, prolucing a decussate surface; this is coarser and rougher on the last whorl and under surface. Colour madder-brown, crossed by mottled broken white lines on whorls is and 4. Spire conic,


[^0]:    * From the 'Americin Journal of Science,' May 1894. pp. B2e-329.
    $\dagger$ In the Author's 'Report on the Crustacea of the Wilkes Exploring Expedition, the Liotifers are made the lowest subdirisions of Crustacea (p. 1408), and the Trilobites are placed, with a query, in the sublivision of Tetradecarods, as multiplicate forms moder the type. In the text above the expression true Phyllopods is used, because most of the socalled Phyllopods of the Palrozoic extibit, in the specimens, no evidence that they are multiplicate, that is, have an excessive or abnormal momber of body-segments or appendages.

